王荣方

【发布单位: 发布时间:2019-01-14 浏览量:289

姓 名:王荣方           职称职务:教授、硕士生导师           学科专业:化学工程与技术

联系方式:17686458002   (注:王老师已调往青岛科技大学工作)


【个人简历】

教育经历

1990-1994,河南大学,化学化工系,本科/学士
2002-2005,华南师范大学,化学与环境学院,研究生/硕士
2005-2008,华南理工大学,化学化工学院,研究生/博士

研究工作经历

2008-至今,西北师范大学,化学化工学院,副教授
2010-2013,厦门大学,固体表面物理化学国家重点实验室,博士后
2011-2013,西开普大学,先进材料化学研究所,访问学者
先后在Chem. Commun.,J. Power Sources,J. Mater. Chem. A,等杂志发表各类论文一百余篇, 其中工程技术一区论文43篇,影响因子大于3的70篇;获授权发明专利20余件;2010、2012获甘肃省高校科技进步一等奖,2014甘肃省高校科技进步三等奖;2016甘肃省自然科学二等奖;2010获教育部高等学校科学研究优秀成果奖(科学技术),自然科学类二等奖。

【学生培养】

培养毕业博士研究生1人,硕士12人,在读8人;实验室三年来获国家奖学金7人;已毕业学生中科院系统工作2人,国内高校工作2人;现在德、美等国外高校攻读博士学位4人;国内985高校读博3人。

【研究领域和兴趣】

主要从事能源与催化材料的设计、开发与应用等领域的研究工作

【科研项目】

先后承担教育部重点项目(209129),中国博士后基金(20110490847),博士后特别资助(2012T50587),南非自然科学基金以及多项重点实验室开放课题。在研国家自然科学基金两项(21163018,21363022)。

【教 学】

化工原理,化工基础,化工原理课程设计,化工原理实验,工业催化,分离技术

【本课题组近三年代表论文】

2015

[1] Zhang Z, Li H, Yang Y, Key J, Ji S, Ma Y, et al. Cow dung-derived nitrogen-doped carbon as a cost effective, high activity, oxygen reduction electrocatalyst. RSC Advances. 2015;5:27112-9.

[2] Yang H, Li H, Wang H, Wang R. A Wasted Material, Duck Blood, as a Precursor of Non-Precious Catalyst for the Oxygen Reduction Reaction. Fuel Cells. 2015;15:214-20.

[3] Wang R, Wang K, Wang Z, Song H, Wang H, Ji S. Pig bones derived N-doped carbon with multi-level pores as electrocatalyst for oxygen reduction. J Power Sources. 2015;297:295-301.

[4] Wang R, Wang H, Zhou T, Key J, Ma Y, Zhang Z, et al. The enhanced electrocatalytic activity of okara-derived N-doped mesoporous carbon for oxygen reduction reaction. J Power Sources. 2015;274:741-7.

[5] Wang R, Song H, Li H, Wang H, Mao X, Ji S. Mesoporous nitrogen-doped carbon derived from carp with high electrocatalytic performance for oxygen reduction reaction. J Power Sources. 2015;278:213-7.

[6] Wang K, Wang R, Li H, Wang H, Mao X, Linkov V, et al. N-doped carbon encapsulated Co3O4 nanoparticles as a synergistic catalyst for oxygen reduction reaction in acidic media. Int J Hydrogen Energy. 2015;40:3875-82.

[7] Wang H, Zhang Z, Yang Y, Wang K, Ji S, Key J, et al. A Co-N-doped carbonized egg white as a high-performance, non-precious metal, electrocatalyst for oxygen reduction. J Solid State Electrochem 2015;19:1727-33.

[8] Wang H, Wang W, Key J, Ji S, Ma Y, Khotseng L, et al. Sponge-like carbon containing nitrogen and iron provides a non-precious oxygen reduction catalyst. J Solid State Electrochem 2015;19:1181-6.

[9] Wang H, Wang K, Song H, Li H, Ji S, Wang Z, et al. N-doped porous carbon material made from fish-bones and its highly electrocatalytic performance in the oxygen reduction reaction. RSC Advances. 2015;5:48965-70.

[10] Wang H, Ma Y, Wang R, Key J, Linkov V, Ji S. Liquid-liquid interface-mediated room-temperature synthesis of amorphous NiCo pompoms from ultrathin nanosheets with high catalytic activity for hydrazine oxidation. Chem Commun 2015;51:3570-3.

[11] Wang H, Ma Y, Lv W, Ji S, Key J, Wang R. Platinum-Tin Nanowires Anchored on a Nitrogen-Doped Nanotube Composite Embedded with Iron/Iron Carbide Particles as an Ethanol Oxidation Electrocatalyst. J Electrochem Soc. 2015;162:H79-H85.

[12] Ma Y, Wang R, Wang H, Key J, Ji S. Control of MnO2 nanocrystal shape from tremella to nanobelt for ehancement of the oxygen reduction reaction activity. J Power Sources. 2015;280:526-32.

[13] Ma Y, Wang R, Wang H, Key J, Ji S. Room-temperature synthesis with inert bubble templates to produce "clean" PdCoP alloy nanoparticle networks for enhanced hydrazine electro-oxidation. RSC Advances. 2015;5:9837-42.

[14] Ma Y, Wang H, Lv W, Ji S, Pollet BG, Li S, et al. Amorphous PtNiP particle networks of different particle sizes for the electro-oxidation of hydrazine. RSC Advances. 2015;5:68655-61.

[15] Ma Y, Wang H, Key J, Ji S, Lv W, Wang R. Control of CuO nanocrystal morphology from ultrathin “willow-leaf” to “flower-shaped” for increased hydrazine oxidation activity. J Power Sources. 2015;300:344-50.

[16] Ma Y, Li H, Wang R, Wang H, Lv W, Ji S. Ultrathin willow-like CuO nanoflakes as an efficient catalyst for electro-oxidation of hydrazine. J Power Sources. 2015;289:22-5.

 2014

[17] Zhou T, Wang H, Ji S, Linkov V, Wang R. Soybean-derived mesoporous carbon as an effective catalyst support for electrooxidation of methanol. J Power Sources. 2014;248:427-33.

[18] Zhou T, Wang H, Ji S, Feng H, Wang R. Synthesis of Mesoporous Carbon from Okara and Application as Electrocatalyst Support. Fuel Cells. 2014;14:296-302.

[19] Yang H, Wang H, Li H, Ji S, Davids MW, Wang R. Effect of stabilizers on the synthesis of palladium–nickel nanoparticles supported on carbon for ethanol oxidation in alkaline medium. J Power Sources. 2014;260:12-8.

[20] Yang H, Wang H, Ji S, Ma Y, Linkov V, Wang R. Nanostructured Pt supported on cocoon-derived carbon as an efficient electrocatalyst for methanol oxidation. J Solid State Electrochem 2014;18:1503-12.

[21] Yang H, Wang H, Ji S, Linkov V, Wang R. Synergy between isolated-Fe3O4 nanoparticles and CNx layers derived from lysine to improve the catalytic activity for oxygen reduction reaction. Int J Hydrogen Energy. 2014;39:3739-45.

[22] Yang H, Li H, Wang H, Ji S, Key J, Wang R. Fe(III) –Induced N Enrichment in the Surface of Carbon Materials Derived from Silk Fibroins and Its Effect on Electrocatalytic Oxygen Reduction. J Electrochem Soc. 2014;161:F795-F802.

[23] Wang R, Zhou T, Wang H, Feng H, Ji S. Lysine-derived mesoporous carbon nanotubes as a proficient non-precious catalyst for oxygen reduction reaction. J Power Sources. 2014;269:54-60.

[24] Wang R, Zhou T, Li H, Wang H, Feng H, Goh J, et al. Nitrogen-rich mesoporous carbon derived from melamine with high electrocatalytic performance for oxygen reduction reaction. J Power Sources. 2014;261:238-44.

[25] Wang R, Wang H, Li H, Wang W, Key J, Khotseng L, et al. An Fe@Fe3C-inserted carbon nanotube/graphite composite support providing highly dispersed Pt nanoparticles for ethanol oxidation. Electrochim Acta. 2014;132:251-7.

[26] Wang R, Ma Y, Wang H, Key J, Ji S. Gas-liquid interface-mediated room-temperature synthesis of "clean" PdNiP alloy nanoparticle networks with high catalytic activity for ethanol oxidation. Chem Commun 2014;50:12877-9.

[27] Wang H, Wang K, Key J, Ji S, Linkov V, Wang R. Egg White Derived Tremella-Like Mesoporous Carbon as Efficient Non-Precious Electrocatalyst for Oxygen Reduction. J Electrochem Soc. 2014;161:H637-H42.

[28] Wang H, Luo R, Ji S, Linkov V, Wang R. Palygorskite Hybridized Carbon Nanocomposite as PtRuIr Support for the Methanol Oxidation Reaction. Fuel Cells. 2014;14:42-8.

[29] Wang H, Da H, Wang R, Ji S. Beef-derived mesoporous carbon as highly efficient support for PtRuIr electrocatalysts and their high activity for CO and methanol oxidation.  South African Journal of Chemistry-Suid-Afrikaanse Tydskrif Vir Chemie2014. p. 33-9.

[30] Song H, Li H, Wang H, Key J, Ji S, Mao X, et al. Chicken bone-derived N-doped porous carbon materials as an oxygen reduction electrocatalyst. Electrochim Acta. 2014;147:520-6.

[31] Ma Y, Wang R, Wang H, Linkov V, Ji S. Evolution of nanoscale amorphous, crystalline and phase-segregated PtNiP nanoparticles and their electrocatalytic effect on methanol oxidation reaction. PCCP 2014;16:3593-602.

[32] Ma Y, Wang H, Li H, Key J, Ji S, Wang R. Synthesis of ultrafine amorphous PtP nanoparticles and the effect of PtP crystallinity on methanol oxidation. RSC Advances. 2014;4:20722-8.

[33] Ma Y, Wang H, Key J, Linkov V, Ji S, Mao X, et al. Ultrafine iron oxide nanoparticles supported on N-doped carbon black as an oxygen reduction reaction catalyst. Int J Hydrogen Energy. 2014;39:14777-82.

[34] Ma Y, Wang H, Ji S, Linkov V, Wang R. PtSn/C catalysts for ethanol oxidation: The effect of stabilizers on the morphology and particle distribution. J Power Sources. 2014;247:142-50.

[35] Ma Y, Wang H, Ji S, Goh J, Feng H, Wang R. Highly active Vulcan carbon composite for oxygen reduction reaction in alkaline medium. Electrochim Acta. 2014;133:391-8.

[36] Ma Y, Wang H, Feng H, Ji S, Mao X, Wang R. Three-dimensional iron, nitrogen-doped carbon foams as efficient electrocatalysts for oxygen reduction reaction in alkaline solution. Electrochim Acta. 2014;142:317-23.

[37] Ma Y, Li H, Wang H, Mao X, Linkov V, Ji S, et al. Evolution of the electrocatalytic activity of carbon-supported amorphous platinum–ruthenium–nickel–phosphorous nanoparticles for methanol oxidation. J Power Sources. 2014;268:498-507.

[38] Ma Y, Li H, Wang H, Ji S, Linkov V, Wang R. Ultrafine amorphous PtNiP nanoparticles supported on carbon as efficiency electrocatalyst for oxygen reduction reaction. J Power Sources. 2014;259:87-91.

[39] Kang J, Wang H, Ji S, Key J, Wang R. Synergy among manganese, nitrogen and carbon to improve the catalytic activity for oxygen reduction reaction. J Power Sources. 2014;251:363-9.

[40] Jia J, Wang H, Li H, Ji S, Yang H, Wang R. Chain-like SnO2-CNx Nanocomposite Supported Pt Nanoparticles and Their Application in the Electrocatalytic Oxidation of Ethanol in Acid Medium. J Electrochem Soc. 2014;161:H860-H6.

[41] Jia J, Wang H, Ji S, Yang H, Li X, Wang R. SnO2-embedded worm-like carbon nanofibers supported Pt nanoparticles for oxygen reduction reaction. Electrochim Acta. 2014;141:13-9.

 2013

[43] Zhou T, Wang H, Key J, Ji S, Linkov V, Wang R. Highly dispersed ultrafine Pt nanoparticles on hydrophilic N-doped carbon tubes for improved methanol oxidation. RSC Advances. 2013;3:16949-53.

[44] Wang W, Wang H, Key J, Linkov V, Ji S, Wang R. Nanoparticulate TiO2-promoted PtRu/C catalyst for methanol oxidation. Ionics. 2013;19:529-34.

[45] Wang W, Li Y, Wang H. Tin oxide nanoparticle-modified commercial PtRu catalyst for methanol oxidation. Micro & Nano Letters. 2013;8:23-6.

[46] Wang W, Li Y, Wang H. Improved methanol oxidation on a PtRu–RuO2/C composite catalyst with close contact. Reaction Kinetics, Mechanisms and Catalysis. 2013;108:433-41.

[47] Wang R, Zhou T, Qiu X, Wang H, Wang Q, Feng H, et al. Montmorillonite modified by CNx supported Pt for methanol oxidation. Int J Hydrogen Energy. 2013;38:10381-8.

[48] Wang R, Wang K, Wang H, Wang Q, Key J, Linkov V, et al. Nitrogen-doped carbon coated ZrO2 as a support for Pt nanoparticles in the oxygen reduction reaction. Int J Hydrogen Energy. 2013;38:5783-8.

[49] Wang R, Wang H, Wang X, Liao S, Linkov V, Ji S. Effect of the structure of Ni nanoparticles on the electrocatalytic activity of Ni@Pd/C for formic acid oxidation. Int J Hydrogen Energy. 2013;38:13125-31.

[50] Wang R, Wang H, Feng H, Ji S. Palladium Decorated Nickel Nanoparticles Supported on Carbon for Formic Acid Oxidation. Int J Electrochem Sci 2013;8:6068-76.

[51] Wang R, Liu Z, Ma Y, Wang H, Linkov V, Ji S. Heterostructure core PdSn–SnO2 decorated by Pt as efficient electrocatalysts for ethanol oxidation. Int J Hydrogen Energy. 2013;38:13604-10.

[52] Wang R, Jia J, Wang H, Wang Q, Ji S, Tian Z. CNx-modified Fe3O4 as Pt nanoparticle support for the oxygen reduction reaction. J Solid State Electrochem 2013;17:1021-8.

[53] Wang R, Da H, Wang H, Ji S, Tian Z. Selenium functionalized carbon for high dispersion of platinum–ruthenium nanoparticles and its effect on the electrocatalytic oxidation of methanol. J Power Sources. 2013;233:326-30.

[54] Wang K, Wang H, Wang R, Key J, Linkov V, Ji S. Palygorskite Hybridized Carbon Nanocomposite as a High-Performance Electrocatalyst Support for Formic Acid Oxidation. South African Journal of Chemistry-Suid-Afrikaanse Tydskrif Vir Chemie. 2013;66:86-91.

[55] Wang K, Wang H, Ji S, Feng H, Linkov V, Wang R. Biomass-derived activated carbon as high-performance non-precious electrocatalyst for oxygen reduction. RSC Advances. 2013;3:12039-42.

[56] Wang H, Luo R, Liao S, Key J, Ji S, Wang R. Surfacial carbonized palygorskite as support for high-performance Pt-based electrocatalysts. J Solid State Electrochem 2013;17:2009-15.

[57] Wang H, Liu Z, Ma Y, Julian K, Ji S, Linkov V, et al. Synthesis of carbon-supported PdSn-SnO2 nanoparticles with different degrees of interfacial contact and enhanced catalytic activities for formic acid oxidation. PCCP 2013;15:13999-4005.

[58] Wang H, Liu Z, Ji S, Wang K, Zhou T, Wang R. Ethanol oxidation activity and structure of carbon-supported Pt-modified PdSn-SnO2 influenced by different stabilizers. Electrochim Acta. 2013;108:833-40.

[59] Wang H, Ji S, Wang W, Wang R. Amorphous Pt@PdCu/CNT Catalyst for Methanol Electrooxidation. South Africa Journal of Chemistry. 2013;66:17-20.

[60] Wang H, Da H, Ji S, Liao S, Wang R. Selenium-Functionalized Carbon as a Support for Platinum Nanoparticles with Improved Electrochemical Properties for the Oxygen Reduction Reaction and CO Tolerance. J Electrochem Soc. 2013;160:H266-H70.

[61] Mao X, Yang L, Yang J, Key J, Ji S, Wang H, et al. A Volcano Curve: Optimizing Activity of Shell-Core PtxRuy@PdCu/C Catalysts for Methanol Oxidation by Tuning Pt/Ru Ratio. J Electrochem Soc. 2013;160:H219-H23.

[62] Ma YJ, Wang H, Ji S, Pollet BG, Wang RF. Pt Decorated Amorphous RuIr Alloys as High Efficiency Electrocatalyst for Methanol Oxidation. ECS Trans 2013;50:1943-50.

[63] Ma Y, Wang R, Wang H, Liao S, Key J, Linkov V, et al. The Effect of PtRuIr Nanoparticle Crystallinity in Electrocatalytic Methanol Oxidation. Materials. 2013;6:1621-31.

[64] Ma Y, Wang R, Wang H, Ji S. Platinum overlaid PdCuIr/C: an Improved Methanol Oxidation Electrocatalyst. Int J Electrochem Sci 2013;8:6085-93.

[65] Li H, Liao J, Zhang X, Liao W, Wen L, Yang J, et al. Controlled synthesis of nanostructured Co film catalysts with high performance for hydrogen generation from sodium borohydride solution. J Power Sources. 2013;239:277-83.

[66] Kang J, Wang R, Wang H, Liao S, Key J, Linkov V, et al. Effect of Ni Core Structure on the Electrocatalytic Activity of Pt-Ni/C in Methanol Oxidation. Materials. 2013;6:2689-700.
 



联系方式

学院办公室:0931-7970806

本科教务办公室:0931-7970144

研究生教务办公室:0931-7971851

团委办公室:0931-7971535